关于桥梁耐久性的研究及展望
摘要:随着交通事业的快速发展,桥梁结构尤其是钢筋混凝土桥梁及索结构桥梁的耐久性问题日益突出,应予以高度重视,本文简述了在耐久性问题上常见的各种病害及影响因素,提出了相应的解决思路。
关键词:桥梁;耐久性;影响因素;钢筋混凝土;索结构
0概述
现役桥梁中,以钢筋混凝土桥梁与索结构桥梁居多。20世纪70年代,混凝土耐久性问题开始在发达国家大量出现,80年代美国有报告显示:在美国约有25.3万座混凝土桥面结构处于不同程度的坏化状态,而且每年还会增加3.5万座新的有害结构。日本也对部分沿海范围内修建的15座混凝土桥梁进行调查,发现它们在建成后不久出现了由于盐分侵蚀引起的钢筋锈蚀、混凝土剥落、预应力筋损伤等各种病害。对于索结构桥梁,拉索的寿命是不可预测的,据统计断索寿命为2~16年,约为桥梁设计寿命的1/10至1/5,在此期间,任何时候拉索都有破断的可能。根据欧美日发达国家的经验,因为结构耐久性原因而产生的维修费、加固费是昂贵的,例如索结构桥梁拉索破断毁桥的修复费用,达全桥建造当年总价的2~4倍。故提高桥梁的耐久性成为迫切需要解决的问题。
耐久性指结构在预期作用和预定的维护条件下,能在造物的使用年限内长期维持其设计性能要求的能力。本文总结了影响耐久性的因素,并提出了几个提高桥梁耐久性的思路以供参考。
1影响桥梁耐久性的因素
桥梁的耐久性问题实际上是各种影响介质对结构的作用,这些介质不仅包括荷载作用,还包括环境侵蚀作用等,归纳起来,有内因和外因两个方面。
1.1内因
1.1.1材料自身特性
混凝土收缩与徐变,收缩应变导致内部拉应力,当其超过混凝土的抗拉强度,材料发生开裂,破坏混凝土整体性,降低其耐久性。
1.1.2结构设计不完善
我国现行的公路钢筋混凝土桥梁结构设计与施工规范主要考虑的是荷载作用下结构安全性与适用性的需要,并未能充分考虑耐久性要求。这就导致在桥梁结构设计中普遍存在重视结构强度设计而轻视耐久性设计的问题。许多桥梁设计时也并没有从结构体系、构造、材料、维护及施工全过程中可能存在的问题等方面去加强和保证结构的耐久性。
1.1.3施工质量等问题
许多短期内发生突然破坏与倒塌的桥梁,多是由于施工质量没有达到规范和设计要求,比较典型的问题包括混凝土质量不合格,振捣不密实;桥梁建设中偷工减料、以次充好;不适当地加快施工进度,没有保证混凝土桥梁所需要的足够的施工养护期;钢筋保护层厚度不足,影响了钢筋混凝土桥梁的耐久性和安全性。次外,在大多数钢筋混凝土桥梁的正常使用过程中,也缺乏合理的维护和管理。还有没有对桥梁进行定期监测和维护,在出现问题后又没有及时维修,使桥梁的使用年限减少,耐久性和安全性降低。
1.2外因
1.2.1环境
(1)混凝土的冻融破坏
当温度降至冰点以下时,部分混凝土内孔隙中的水将结冰,产生体积膨胀,使孔壁受压变形,冰融化后,就可能使孔壁产生拉应力,当作用于孔壁的拉应力大于混凝土的极限抗拉强度时,就会产生微裂缝。随着冻融循环,裂宽和裂深逐渐加大,达到钢筋表面时,就会加剧钢筋的腐蚀,降低混凝土结构的耐久性。
(2)钢筋的锈蚀
钢筋在混凝土中处于一种强碱性环境。在这种环境中,钢筋表面形成一层惰性的氧化铁薄膜,它使钢筋表面不存在活性状态的铁,钢筋就不会产生锈蚀。而一旦钝化膜被破坏,在有水和氧气的条件下,钢筋就会产生锈蚀。钢筋锈蚀是造成钢筋混凝土桥梁耐久性损伤的最主要和最直接因素,也是混凝土桥梁耐久性破坏的主要形式之一。
通常,钢筋表面氧化铁薄膜遭到破坏的原因主要有两个:一是混凝土碳化,混凝土材料具有一定的渗透性,空气中的二氧化碳扩散到混凝土中与水作用生成碳酸,碳酸与水泥水化过程中产生的氢氧化钙、硅酸二钙、硅酸三钙反应生成碳酸钙,在自由水的作用下碳酸钙沉淀在混凝土内部的孔穴中,这个过程就是混凝土碳化。混凝土碳化会使混凝土的pH值降低,当混凝土的pH值小于l1.5且碳化发生在钢筋附近时,就能引起钢筋表面惰性氧化铁薄膜的破坏,在空气中的水和氧的作用下,还会引起平行于钢筋的裂纹和混凝土的崩裂;二是氯离子的作用而破坏氧化铁薄膜。氯离子本身并不直接危害混凝土,但它的存在会破坏钢筋的钝化,使钢筋暴露在腐蚀的危险下。
(3)硫酸盐的侵蚀
混凝土碳化的速度一般比较缓慢,但当环境为酸性条件时,碳化速度急剧加快,因为初始碳化形成的防护层被酸溶解而流失,从而使新的表面不断地暴露在侵蚀环境下,加深腐蚀,使混凝土密实性加速丧失。
1.2.2荷载作用
结构面临的最普遍的一种自然环境就是荷载作用,包括静力作用和动力作用。在荷载作用下,结构发生变形,在约束条件下,荷载应变一应力有可能超过材料的强度而使结构产生裂缝,耐久性降低。桥梁拉索就是随机荷载环境与随机介质环境下的腐蚀、疲劳及钢索的腐蚀疲劳等共同作用的结果,导致其寿命的不可预测性。
1.2.3混凝土结构的裂缝
混凝土结构的裂缝最容易成为因水分渗入导致钢筋锈蚀的通道。混凝土结构的裂缝可分为受力裂缝、非受力裂缝两大类。非受力裂缝大多与结构耐久性有关,即使现在对承载能力没有影响,但必须考虑对结构长期使用过程中与外界环境的接触时有害物质的渗入,所以合理控制裂缝宽度、数量以及裂缝开展速度,无疑会改善结构的耐久性。
还有一种造成混凝土开裂的原因即为碱一集料反应,碱一集料反应指集料中活性硅与水泥浆中氢氧离子作用生成水化硅酸钙的反应,其体积膨胀足以使混凝土破裂。水泥中含碱量过高(0.6),骨料中水分过大,及骨料中的活性骨料含量过高,是引起碱一集料反应的3个条件。碱一集料反应一旦发生,体积迅速增大,对混凝土结构破坏的发展速度非常快,破坏程度也更严重,发生碱一骨料反应的主要原因是混凝土结构中使用含活性硅的骨料。
2提高桥梁耐久性的几个思路
2.1从材料入手
(1)采用高性能混凝土
所谓高性能混凝土即为高强度、高施工性能、高耐久性混凝土。高性能混凝土具有低水灰比,高强度骨料的特点,从而减小了骨料与胶凝材料间的孔隙率,改善了混凝土的渗透性,阻止了碱一骨料反应,大大提高了混凝土的耐久性的同时也提高了混凝土强度。