一、静力阶段,它最先由日本大森房吉教授通过对当时有限的震害观测和理论认识提出的抗震设计理论,仅仅适用于刚体结构。它没有考虑结构的动力特性和场地差别对建筑结构的影响,不加区分的对所有结构都采用一个统一水平地震力V=kW(k≈0.1;W为结构的重量)来考虑地震作用效应的影响。

  二、反应谱阶段,随着真实地震动记录的获取和结构动力学理论的发展,1940年美国的Biot教授提出了弹性反应谱的概念,反应谱是单自由弹性体系在获取的众多地震记录的激励下,结构周期与响应之间的关系,包括加速度反应谱,速度反应谱,位移反应谱。它综合考虑了结构的动力特性,至今仍然是各国规范设计地震力取值的基础。
  地震作用力的计算常常用底部剪力法和振型分解反应谱法,振型分解反应谱法的基本概念是:假定建筑结构是线弹性的多自由度体系,利用振型分解和振型正交性的原理,将求解n个自由度弹性体系的地震反应分解为求解n个独立的等效单自由度弹性体系的最大地震反应,进而求得对应于每一个振型的作用效应。此时,就可以根据考虑地震作用的方式不同,采用不同的组合方式,对于平面振动的多质点弹性体系,可以用SRSS法,它是基于假定输入地震为平稳随机过程,各振型反应之间相互独立而推导得到的;对于考虑平—扭耦连的多质点弹性体系,采用CQC法,它与SRSS法的主要区别在于:平面振动时假定各振型相互独立,并且各振型的贡献随着频率的增高而降低;而平—扭耦连时各振型频率间距很小,相邻较高振型的频率可能非常接近这就要考虑不同振型间的相关性,还有扭转分量的影响并不一定随着频率增高而降低,有时较高振型的影响可能大于较低振型的影响,相比SRSS时就要考虑更多振型的影响。底部剪力法考虑到结构体系的特殊性对振型分解反应谱法的简化,当建筑物高度不大,以剪切变形为主且质量和刚度沿高度分布比较均匀的结构,结构振动位移反应往往以第一振型为主,而且第一振型接近于直线时,就可以把振型分解法简化为基本的底部剪力法计算公式。这个基本公式计算得到的各质点的水平地震作用可以较好的反映刚度较大的结构,但当结构基本周期较长,场地特征周期较小时,计算所得顶部地震作用偏小,为此,《抗震规范》规定,当结构基本周期大于1.4倍的场地特征周期时,在顶部附加水平地震作用。
  三、动力理论阶段,随着对地震动认识和理解的不断加深,认识到反应谱的一些不足,如对地震动持时的影响考虑不周,再加上计算机性能的提高,使得动力法逐渐发展起来了,它的本质直接求解动力方程,但是由于地震时地面运动加速度极不规则,对于微分方程无法求出它的闭合解,因此多采用数值积分法。通常的做法是对已记录的地震波进行连续分段处理,每段的数据都看做不变的,然后作用到结构上,通过动力平衡方程来求得此刻的加速度、速度、位移反应,接着与前一段的加速度、速度、位移进行叠加,把叠加的结果作为下一时段的初始数据,依此类推,最终求得结构在所给出低周反复地震波下的加速度、速度和位移动力反应变化过程。
  四、在1994年美国Northridge地震和1995年日本Kobe地震后,美日学者又提出了基于性态的抗震设计方法,基于性态的基本思想,就是使建筑结构在使用期间满足各种使用功能的要求。它与传统基于力的设计方法不同,对结构性能的评判主要是基于位移准则,用不同的位移指标来对结构性能进行不同的控制。但是由于大震下结构的非弹性变形难以准确的估计,使得基于性态的设计方法只能停留在理论上。但提出它的积极意义至少有两点:1. 强调地震工程的系统性和社会性;2. 认识到原有抗震设计规范的部分不合理性。
  作为基于性能抗震设计的基础,应该对某一具统计意义的特定水平地震作用下的结构位移,速度和加速度进行准确的评估,还应该有一个合理的评估方法和可用的评估工具。正是因为这个目的,提出和发展了Pushover方法和能力谱方法。Pushover方法的基本思路是采用静力加载,假定某一分布形式的侧向荷载作用在结构上,逐渐加载直到达到结构控制点目标位移或结构破坏,从而得到控制点的水平侧移与基底剪力关系曲线,用以评估结构的抗震性能。Pushover方法依赖于侧向力的分布形式和弹塑性反应谱目标位移的确定。