测距仪测距的过程中,由于受到仪器本身的系统误差以及外界环境影响,会造成测距精度的下降。为了提高测距的精度,我们需要对测距的结果进行改正,可以分为三种类型的改正:仪器常数的改正、气象改正和倾斜改正。
仪器常数改正
仪器常数包括加常数和乘常数。
加常数改正:加常数K产生的原因是由于仪器的发射面和接收面与仪器中心不一致,反光棱镜的等效反射面与反光棱镜的中心不一致,使得测距仪测出的距离值与实际距离值不一致。因此,测距仪测出的距离还要加上一个加常数K进行改正。
乘常数改正:光尺长度经一段时间使用后,由于晶体老化,实际频率与设计频率有偏移,使测量成果存在着随距离变化的系统误差,其比例因子称乘常数R。我们由测距的公式可以看出,如果光尺长度变化,则对距离的影响是成比例的影响。所以测距仪测出的距离还要乘上一个乘常数R进行改正。
对于加常数和乘常数,我们在测距前先进行检定。目前的测距仪都具有设置常数的功能,我们将加常数和乘常数预先设置在仪器中,然后在测距的时候仪器会自动改正。如果没有设置常数,那么可以先测出距离,然后按照下面公式进行改正:
气象改正
测距仪的测尺长度是在一定的气象条件下推算出来的。但是仪器在野外测量时的气象条件与标准气象不一致,使测距值产生系统误差。所以在测距时应该同时测定环境温度和气压。然后利用厂家提供的气象改正公式计算改正值,或者根据厂家提供的对照表查找对应的改值。对于有的仪器,可以将气压和温度输入到仪器中,由仪器自动改正。
倾斜改正
由于测距仪测得的是斜距,应此将斜距换算成平距时还要进行倾斜改正。目前的测距仪一般都与经纬仪组合,测距的同时可以测出竖直角α或天顶距z,然后按上面公式计算平距。
测距仪的标称精度
测距误差可以分为两类:一类是与待测距离成比例的误差,如乘常数误差,温度和气压等外界环境引起的误差;另一类是与待测距离无关的误差,如加常数误差。所以一般将测距仪的精度表达为下面两种形式:
mD = ± (A+B·10-6 D) 或 mD = ± (A+B·ppm·)
式中:A为固定误差,即测一次距离总会存在这么多的误差;B为比例误差系数,表示每测量一公里就会存在这么多误差。1ppm=1mm/1km=1×10-6;D为所测距离,单位km。
举例:如某台测距仪的标称精度为±(3mm+5ppm),那么固定误差为3mm,比例误差系数为5。
二、全站仪测距的温度和气压改正
通常是开机后将观测时的温度和气压输入全站仪,仪器自动对距离进行温度和气压改正。
测定气温通常使用通风干湿温度计,测定气压通常使用空盒气压表。气压表所用单位有mb(102Pa)和mmHg(133.322Pa)两种,而1mb=0.7500617mmHg。气温读数至1度,气压读数至1mmHg。
小知识:《温度和气压对测距的影响》
在一般的气象条件下,在1Km的距离上,温度变化1度所产生的测距误差为0.95mm,气压变化1mmHg所产生的测距误差为0.37mm,湿度变化1mmHg所产生的测距误差为0.05mm。湿度的影响很小,可以忽略不计,当在高温、高湿的夏季作业时,就应考虑湿度改正。
注意:
1、只要温度精度达到1度,气压精度达到27mmHg,则可保证1Km的距离上,由此引起的距离误差约在1mm左右。
2、当气温t=35度,相对湿度为94%,则在1Km距离上湿度影响的改正值约为2mm。由此可见,在高温、高湿的气象条件下作业,对于高精度要求的测量成果,这一因素不能不予以考虑。
3、由于地铁轨道工程测量以“两站一区间”分段进行,从导线复测到控制基标测量,再到加密基标测量所涉及的距离测量都属短距离测量,上述改正值较小,只要正确设置温度值和气压值即可满足规范要求。
三、全站仪测距的精度问题
测距精度,一般是指经加常数K、乘常数R改正后的观测值的精度。虽然加常数和乘常数分别属于固定误差和比例误差,但不是测距精度的表征,而是需要在观测值中加以改正的系统误差,故从某中意义上来说,与标称误差中的A和B是有区别的。因为测距的综合精度指标,一般以下式表示:
MD=±(A+B×10-6D)
每台仪器出厂前就给了A和B之值,再行检验的目的,一方面是通过检验看某台仪器是否符合出厂的精度标准(标称精度),另一方面是看仪器是否还有一定的潜在精度可挖。这与加常数K、乘常数R的检验目的是不一样的。前者是为了检验仪器质量,后者是为了改正观测成果,决不能用检定精度的指标A与B去改正观测成果
小知识:《标称精度》
测距仪都有一个标称精度,他是仪器出厂的合格精度指标,仅一般地说明仪器的性能,而决不能理解为只能达到这样的测距精度,尤其是不能代表现场作业时的边长实测精度。
注意:
1、加常数K、乘常数R改正值从仪器的检测结果得来。加常数K与实测距离大小无关,乘常数R应与实测距离相乘得到改正值,乘常数R单位为mm/Km,实测距离单位为Km,所得改正值单位为mm。
2、外业作业时应进行加常数K、乘常数R改正。